

Master of Engineering: Engineering Data Analytics

Become the engineer who confidently leads the transformation of big data into informed, high-impact actions.

What You Learn

- Understand and apply appropriate data analysis tools and methods to drive improvements to products and processes, research, design, testing, and operations.
- Apply best methods and practices for the capture, storage, cleaning, querying, analysis, and visualization of data
- Evaluate and implement the most effective computing technology, modeling techniques, and analysis methods for your engineering projects
- Sharpen your ability to effectively lead change efforts by improving your skills in project management, team leadership, and professional communications.

Where and How You Learn

Where Online; you may start in the fall or spring semester of any year

How Complete 15-credit core curriculum in data analytics and 15 elective credits that span either additional data science courses or other online engineering and professional development courses.

Classes meet online once a week; each class is recorded, so you can participate regardless of your travel schedule or location.

I selected the MEDA program as a way to supplement my engineering background in a world inundated with data. The program has delivered by providing new skills, directly improving the value of my work.

> John Kroening, Oshkosh Corp.

Interdisciplinary Professional Programs COLLEGE OF ENGINEERING UNIVERSITY OF WISCONSIN-MADISON

Apply Now!

Visit go.wisc.edu/MEDA

At a Glance

Delivery: Online Credits: 30 graduate credits Time Frame: 2 to 3 years Tuition: Resident and non-resident: \$1,300 per credit

Typical Curriculum

- Industrial Data Analytics
- Machine Learning
- Database Design and Management
- Design Optimization
- Data Visualization
- Applied Temporal Data Analytics
- Technical Project Management
- Engineering courses in Leadership, Manufacturing, Polymer Engineering, and Sustainable Systems

Questions?

For more information on admission requirements, how to apply, tuition and financial aid or other questions, contact:

Justin Bush 608-262-0468 justinkyle.bush@wisc.edu

Sample Plan of Study

	Class Number	Class Name	Cr
1 st FA	ECE 532	Matrix Methods in Machine Learning	3
	LIS 751	Database Design for Information Professionals	3
1 st SP	ISyE 612	Applied Temporal Data Analytics for Engineers	3
	ME 548	Introduction to Design Optimization	3
1 st SU	ISyE 512	Inspection, Quality Control, and Reliability	3
	ME 459	Computing Concepts for Applications in Engineering	3
2"" FA	ISyE 602	Interactive Data Visualization	3
2 nd SP	ME 759	High-Performance Computing for Applications in Engineering	3
	ISyE 620	Simulation Modeling and Analysis	3
3 rd FA		Choose an elective	3

Listed courses and schedule are subject to change

Choose from a Broad Selection of Elective Courses in Four Concentrations

Add electives from one or more concentrations to reach degree requirements of 30 credits. You develop your custom plan of study in consultation with the program director

Leadership

Engineering Economics and Management
Technical Project Management
Fostering and Leading Innovation3 cr.
Manufacturing
Fundamentals of Industrial Data Analytics
Quality Engineering and Quality Management
Design and Analysis of Manufacturing Systems
Sustainable Systems
Core Competencies of Sustainability
Special Topics: Distributed Renewable Systems Design
Sustainable Approaches to System Improvement
Polymers
Engineering Design with Polymers
Polymer Characterization
Polymer Coatings
Plastics Recycling and Sustainability

Professional Development Electives

Connected Learning Essentials1	cr.
Presentations for Professionals1	cr.
Writing for Professionals1	cr.
Marketing for Non-Marketing Professionals1	Cr.
Organizational Communication and Problem Solving	Cľ.
Change Management1	cr.
_eading Teams1	cr.
Creating Breakthrough Innovations1	cr.
Ethics for Professionals1	cr.
Effective Negotiation Strategies1	Cr.

Positively challenging. Advanced topics with direct professional applications.

Om<mark>ar Saleh,</mark> WEC Energy Group

College of Engineering • Interdisciplinary Professional Programs

705 Extension Building 432 North Lake Street Madison, Wisconsin 53706

Phone: 800.462.0876 or 608.262.2061 Fax: 608.263.3160 Web: interpro.wisc.edu