Master of Engineering: Engineering Data Analytics

Become the engineer who confidently leads the transformation of big data into informed, high-impact actions.

What You Learn

- Understand and apply appropriate data analysis tools and methods to drive improvements to products and processes, research, design, testing, and operations.
- Apply best methods and practices for the capture, storage, cleaning, querying, analysis, and visualization of data
- Evaluate and implement the most effective computing technology, modeling techniques, and analysis methods for your engineering projects
- Sharpen your ability to effectively lead change efforts by improving your skills in project management, team leadership, and professional communications.

Where and How You Learn

Where Online; you may start in the fall, spring or summer semester of any year

How Complete 15-credit core curriculum in data analytics and 15 elective credits that span either additional data science courses or other online engineering and professional development courses.

Classes meet online once a week; each class is recorded, so you can participate regardless of your travel schedule or location.

I selected the MEDA program as a way to supplement my engineering background in a world inundated with data. The program has delivered by providing new skills, directly improving the value of my work.

> John Kroening, Oshkosh Corp.

Apply Now!

Visit go.wisc.edu/MEDA

At a Glance

Delivery: Online

Credits: 30 graduate credits **Time Frame:** 2 to 3 years

Tuition: Resident and non-resident:

\$1,300 per credit

Typical Curriculum

- Industrial Data Analytics
- Machine Learning
- Computing Concepts
- Design Optimization
- Data Visualization
- Applied Temporal Data Analytics
- Technical Project Management
- Engineering courses in Leadership, Manufacturing, Polymer Engineering, and Sustainable Systems

Questions?

For more information on admission requirements, how to apply, tuition and financial aid or other questions, contact:

Justin Bush

608-262-0468

justinkyle.bush@wisc.edu

	Class Number	Class Name	Cr
1st FA	EPD 416	Engineering Applications of Statistics	3
	ME 459	Computing Concepts for Applications in Engineering	3
14 CD	ISyE 524	Introducation to Opimization	3
1st SP		Choose an Elective	3
1st SU	ISyE 512	Inspection, Quality Control, and Reliability	3
2nd EA	ECE 532	Matrix Methods in Machine Learning	3
2 nd FA	ISyE 602	Interactive Data Visualization	3
2 nd SP	ISyE 412	Foundations of Industrial Data Analytics	3
2"- SP	ISyE 603	Applied Temporal Data Analytics for Engineers	3
3 rd FA	EPD 612	Technical Project Management	3

Listed courses and schedule are subject to change

Choose from a Broad Selection of Elective Courses in Four Concentrations

Add electives from one or more concentrations to reach degree requirements of 30 credits. You develop your custom plan of study in consultation with the program director

Leadership

Engineering Economics and Management	3 cr
Technical Project Management	3 cr
Fostering and Leading Innovation	
Manufacturing	
Production Systems Engineering	3 cr
Quality Engineering and Quality Management	
Design and Analysis of Manufacturing Systems	
Sustainable Systems	
Core Competencies of Sustainability	3 cr
Special Topics: Distributed Renewable Systems Design	3 cr
Sustainable Approaches to System Improvement	4 cr
Polymers	
Engineering Design with Polymers	3 cr
Polymer Characterization	
Polymer Coatings	3 cr
Plastics Recycling and Sustainability	

Professional Development Electives

Connected Learning Essentials1	1	cr.
Presentations for Professionals	1	cr.
Marketing for Non-Marketing Professionals	1	cr.
Organizational Communication and Problem Solving1	1	cr.
Change Management	1	cr.
Leading Teams	1	cr.
Creating Breakthrough Innovations	1	cr.
Ethics for Professionals		
Effective Negotiation Strategies	1	cr

Positively challenging. Advanced topics with direct professional applications.

Omar Saleh, WEC Energy Group