Advance your career in the growing field of power electronics and electric machines from a best online graduate program as ranked by U.S. News and World Report.

What You Learn

• Learn the latest technology in power electronics, electric machines, actuators, sensors, drives, motion control and drive applications.
• Learn from distinguished and internationally renowned faculty from the Department of Electrical and Computer Engineering and the Wisconsin Electric Machines and Power Electronics Consortium (WEMPEC).
• Tailor your experience to fit your specific career goals and interests through technical elective courses.

Where & How You Learn

Where Online; start in summer, fall, or spring.
How Start by completing a 9-credit certificate program in Power Conversion and Control (PCC). With successful completion of this Certificate and a minimum GPA of 3.3, you may apply to the online MS degree in Power Engineering. The PCC credits are applied to the 30-credit master’s degree requirement. Labs online during summer months.

At a Glance
Delivery: Online
Credits: 30 graduate credits
Time Frame: 1 year for the PCC Certificate, an additional 2-3 years for the MS degree in Power Engineering, depending on the number of classes taken each term
Tuition: Resident and non-resident: $1,600 per credit

Typical Curriculum
Required Courses, PCC Certificate
• Introduction to Electric Drive Systems
• Power Electronic Circuits
• Automatic Controls
Core ECE MS Curriculum:
Power Engineering
• Electric Machine and Drive System Lab or Power Electronics Lab
• Dynamics and Control of AC Drives
• Solid State Power Conversion
Typical Electives
• Electric Power Systems
• Computer Control of Machines and Processes
• Utility Application of Power Electronics

Questions?
For more information on admission requirements, how to apply, tuition and financial aid or other questions, contact:
Justin Kyle Bush, Graduate Advisor
608-262-0468
gradadmissions@interpro.wisc.edu

Getting exposure to some highly technical topics in the field of power electronics that I would not have had the time or resources to pursue on my own. Now that I have a baseline, I’m able to bring it back to industry and continue building on it.

Nathan Gustafson, Senior Electrical Engineer - Milwaukee Tool
Required Courses, PCC Certificate

Introduction to Electric Drive Systems
Learn the basic theory underlying the analysis and design of adjustable-speed drive systems employing power electronic converters and AC or DC machines. Learn the basic concepts of torque and speed control in both DC and AC machines, including variable-frequency operation of induction and synchronous machines, field-oriented control, and more.

Power Electronic Circuits
In this introduction to the basic power electronic devices, you will study and analyze fundamental power conditioning converters. Course material will cover piecewise linear, uncontrolled circuits; power electronic devices; and AC/DC, DC/DC, AC/AC, and resonant converters.

Automatic Controls
This course provides a comprehensive understanding of single input, single output (SISO) continuous closed-loop control system analysis and design. Discrete (computer) control also is introduced including analysis in the z domain.

Core ECE MS Curriculum: Power Engineering

<table>
<thead>
<tr>
<th>Course Level</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core ECE MS</td>
<td>ECE712</td>
<td>Solid State Power Conversion</td>
<td>3</td>
</tr>
<tr>
<td>Core ECE MS</td>
<td>ECE711</td>
<td>Dynamics and Control of AC Drives</td>
<td>3</td>
</tr>
<tr>
<td>Core ECE MS</td>
<td>ECE504</td>
<td>Electric Machine and Drive System Lab</td>
<td>3</td>
</tr>
<tr>
<td>Core ECE MS</td>
<td>ECE512</td>
<td>Power Electronics Lab</td>
<td>3</td>
</tr>
<tr>
<td>Core ECE MS</td>
<td>ECE713</td>
<td>Electromagnetic Design of AC Machines</td>
<td>3</td>
</tr>
<tr>
<td>Core ECE MS</td>
<td>ECE427</td>
<td>Electric Power Systems</td>
<td>3</td>
</tr>
<tr>
<td>Core ECE MS</td>
<td>ECE/</td>
<td>Advanced Robotics</td>
<td>3</td>
</tr>
<tr>
<td>Core ECE MS</td>
<td>ME739</td>
<td>Advanced Robotics</td>
<td>3</td>
</tr>
<tr>
<td>Core ECE MS</td>
<td>ECE714</td>
<td>Utility Application of Power Electronics</td>
<td>3</td>
</tr>
<tr>
<td>Core ECE MS</td>
<td>ME746</td>
<td>Dynamics of Controlled Systems</td>
<td>3</td>
</tr>
<tr>
<td>Core ECE MS</td>
<td>ME747</td>
<td>Advanced Control of Machines and Processes</td>
<td>3</td>
</tr>
</tbody>
</table>

Technical Electives

<table>
<thead>
<tr>
<th>Course Level</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall 3</td>
<td>ECE713</td>
<td>Electromagnetic Design of AC Machines</td>
<td>3</td>
</tr>
<tr>
<td>Spring 3</td>
<td>ECE427</td>
<td>Electric Power Systems</td>
<td>3</td>
</tr>
<tr>
<td>Summer 3</td>
<td>ECE/ME739</td>
<td>Advanced Robotics</td>
<td>3</td>
</tr>
<tr>
<td>Fall 4</td>
<td>ME746</td>
<td>Dynamics of Controlled Systems</td>
<td>3</td>
</tr>
<tr>
<td>Fall 4</td>
<td>ME747</td>
<td>Advanced Control of Machines and Processes</td>
<td>3</td>
</tr>
</tbody>
</table>

1. Listed courses and schedule are subject to change
2. Must apply for admission to MS program with a minimum GPA of 3.3 in the PCC Certificate
3. Offered even-year summers
4. Offered odd-year summers
5. Total of Five 700-level Courses Required
6. Prerequisite for ECE714 is ECE427
7. Prerequisite for ME747 is ME447

Flexible Curriculum

In-depth Technical Knowledge
Start Summer, Fall, or Spring
Learn more at go.wisc.edu/Power

College of Engineering • Interdisciplinary Professional Programs
705 Extension Building 432 North Lake Street Madison, Wisconsin 53706
Phone: 800.462.0876 or 608.262.2061 Fax: 608.263.3160 Web: interpro.wisc.edu