Introduction to Electric Machines and Drives
Upcoming dates (1)
Fee
- $1,695
-
Fee covers other: online instruction and course materials.
Discounts
The Wisconsin Electric Machines and Power Electronics Consortium (WEMPEC) Member Discount: $200 off the course fee
ID
RA01369-C488
Credits
- CEU: 2
- PDH: 20
Schedule
All course times are CENTRAL.
03/06/2023 08:00am - 02:30pm Central Time
03/07/2023 08:00am - 02:30pm Central Time
03/08/2023 08:00am - 02:30pm Central Time
03/09/2023 08:00am - 02:30pm Central Time
This short course will be synchronous online teaching. There will be no streaming or downloading of lectures available. Therefore, it is important participants plan to attend the whole short course in person remotely.
Course Notes
Details on how to access the online course will be sent with registration confirmation. The course is accessed via your internet browser.
Instructors
Michael Harke, Thomas Jahns, Phil Kollmeyer, Michael Ryan, Bulent Sarlioglu
Location
This is an online course.
Cancellation Policy
If you cannot attend, please notify us no later than one week before your course begins, and we will refund your fee. Cancellations received after this date and no-shows are subject to a $150 administrative fee. You may enroll a substitute at any time before the course starts.
Course Overview
In the last 30 years, the introduction of power electronic drives with motors has led to new design opportunities. The increased integration of these drives and machines has triggered a quantum leap in productivity, efficiency and system performance.
This practical, hands-on course will give you a solid introduction to this rapidly expanding field under the guidance of industry experts.
Who Should Attend?
This course will benefit those new to the field of electrical rotating machines and drives and those desiring a refresher from the perspective of actual designs from practitioners. People who will find this course valuable include those working in the fields of:
- Appliance drives
- Cranes and elevators
- Precision motion control
- Renewable/alternative energy
- Electric/hybrid-electric vehicles Autonomous vehicle control
- Aerospace, marine, and military vehicles
Course Outline
Introduction
Review: AC Systems and Three-Phase Circuits
- AC voltages and currents
- Effective or RMS values
- Complex numbers and phasor concepts
- Why three-phase?
- Harmonics
- Per-unit system
Review: Electromagnetics and Energy Conversion
- Magnetic fields, flux, and force
- Faraday’s Law of Induction
- Ferromagnetic materials
- Inductors and transformers
- The DC machine
Basics of AC Machines
- Elementary AC machines: air-gap MMF, flux, voltage waveforms
- Distributed stator windings
- Elementary rotor-stator coupling
- Three-phase operation
Induction Motors: Steady State
- Induction machine types: wound rotor, “squirrel cage” rotor
- Circuit models
- Concept of slip
- Torque-speed curves
Synchronous Machines: Steady State
- Synchronous machine types: wound rotor, permanent magnet
- Circuit models and vector diagrams
- Capability curves
Converter Power Electronics: Basic Theory, Devices
- Review of circuit fundamentals
- Basic converters
- Conversion stages
- Device characteristics and capabilities
AC Inverter Basics: VSI, CSI, Modulation
- Basic inverter system
- Voltage source inverter (VSI)
- Current source inverter (CSI)
- Modulation techniques
- Pulse width modulation (PWM)
- Practical considerations
Adjustable Speed Drives: Basics
- Basic adjustable speed drive systems
- Review: DC machine speed control
- Varying voltage
- Varying frequency
- Motor and drive selection
Adjustable Speed Drives: Volts/Hz Control
- Concepts of constant flux and torque
- Operation at constant torque or power
- Low speed operation
- Basic Volts-per-Hertz system
- Drive limitations
Adjustable Torque Drives: Basics
- Ideal adjustable torque systems
- Review: DC machine torque control
- Key elements of torque control
- Synchronous machine torque
- Induction machine torque-slip control
Induction Motor Field Orientation
- Review machine forces: Lorentz and reluctance
- Rotating vectors: stator and rotor currents
- Lorentz force control = vector control
- AC current regulation
- IM slip and torque production
Application-Specific Selection of Machine-and-Drive Systems
- Load types and characteristics
- Specific drives to suit application
- Practical issues of machine and drive selection
- PM versus IM
- Installation considerations
Application of Wide Bandgap Devices to Power Electronics
- Review of Silicon Carbide (SiC) and Gallium Nitride (GaN) devices
- DC-DC converter example using SiC
- 2-level VSI using SiC and GaN inverters
High-Speed Electric Machines
- Review of high speed electric machines
- Sizing equation and definition of tip speed
- Pros and cons of each machine for high speed
- High-speed machine design considerations
Instructors
Michael Harke
Michael's work at Hamilton Sundstrand in the Applied Research Department focused on motor control and power electronics for aerospace applications including motor drives and actuators. When with Danfoss Power Electronics, he focused on industrial motor control. He has since returned to Hamilton Sundstrand, now known as UTC Aerospace Systems. He is also an Adjunct Professor at the University of Rome La Sapienza, teaching coursework on dynamic analysis and control of ac machines. Michael is a member of the Institute of Electrical and Electronic Engineers where he serves as the Past Chair of the Industrial Drives Committee and society representative to the Sensors Council AdCom for the Industry Applications Society. He was the Technical Program co-Chair for the IEEE Energy Conversion Congress and Exposition 2013. He has published 25 papers in conferences and journals and has eight patents. During his Mechanical Engineering studies for his BS, MS and PhD, he worked with numerous companies including Whirlpool, Ford Motor Company, Schneider Electric, International Rectifier and Hamilton Sundstrand.
Thomas Jahns
Thomas M. Jahns is a Professor with the Department of Electrical and Computer Engineering at the University of Wisconsin–Madison. Previously with GE Corporate R&D and Massachusetts Institute of Technology, Jahns has research interests in electric machines, drive system analysis and control, and power electronic modules.
Phil Kollmeyer
Phillip Kollmeyer received the B.S., M.S., and PhD degrees in Electrical Engineering from the University of Wisconsin-Madison, in 2006, 2011, and 2015 respectively, with a focus on electric machines, power electronics, and controls.
As a graduate student, Phil built a prototype light-duty electric truck and led the development of a new energy storage test facility. He also performed a range of projects on hybrid energy storage, battery aging, and battery and ultracapacitor modeling, and received two awards for his teaching in the electric machines and drives area. Phil is currently a Senior Principal Research Engineer at McMaster University, Hamilton, ON, Canada. He is the engineering lead for the team of 40 graduate students and post-doctoral fellows working on The Car of the Future Project, which is funded by Stellantis and Canada's Natural Sciences and Engineering Research Council.
Michael Ryan
Michael Ryan received his B.S. in Electrical Engineering from the University of Connecticut, Storrs,1988, M.E. degree in Electrical Engineering from Rensselaer Polytechnic Institute, Troy, NY, 1992, and Ph.D. in Electrical Engineering from the University of Wisconsin-Madison, 1997. At UW-Madison, Ryan worked in the WEMPEC labs on projects including dc–dc converters, variable-speed generation systems, and UPS inverter control.
Ryan is President of Ryan Consulting, involved in the application of Power Electronics and Controls, particularly for Alternative Energy systems. He has held prior positions at Capstone Turbine, General Electric Corporate Research and Development and Defense Systems divisions, Automated Dynamics, Otis Elevator, and Hamilton Standard.
Bulent Sarlioglu
Bulent Sarlioglu is a Jean van Bladel Associate Professor at University of Wisconsin—Madison, and Associate Director, Wisconsin Electric Machines and Power Electronics Consortium (WEMPEC). Dr. Sarlioglu spent more than 10 years at Honeywell International Inc.’s aerospace division. As a staff system engineer, he earned Honeywell’s technical achievement award and an outstanding engineer award. Dr. Sarlioglu contributed to multiple programs where high-speed electric machines and drives are used mainly for aerospace and ground vehicle applications. Dr. Sarlioglu is the inventor or co-inventor of 20 US patents and many other international patents. He published more than 200 journal and conference papers with his students. His research areas are motors and drives including high-speed electric machines, novel electric machines, and application of wide bandgap devices to power electronics to increase efficiency and power density. He received the NSF CAREER Award in 2016 and the 4th Grand Nagamori Award from Nagamori Foundation, Japan in 2019. Dr. Sarlioglu became IEEE IAS Distinguished Lecturer in 2018. He was the technical program co-chair for ECCE 2019 and was the general chair for ITEC 2018. He is serving as a special session co-chair for ECCE 2020.
Introduction to Electric Machines and Drives
Location: Online
Course #: RA01369-C488
Fee: $1,695
Fee
- $1,695
-
Fee covers other: online instruction and course materials.
Discounts
The Wisconsin Electric Machines and Power Electronics Consortium (WEMPEC) Member Discount: $200 off the course fee
Credits
- CEU: 2
- PDH: 20
Schedule
All course times are CENTRAL.
03/06/2023 08:00am - 02:30pm Central Time
03/07/2023 08:00am - 02:30pm Central Time
03/08/2023 08:00am - 02:30pm Central Time
03/09/2023 08:00am - 02:30pm Central Time
This short course will be synchronous online teaching. There will be no streaming or downloading of lectures available. Therefore, it is important participants plan to attend the whole short course in person remotely.
Course Notes
Details on how to access the online course will be sent with registration confirmation. The course is accessed via your internet browser.
Instructors
Michael Harke, Thomas Jahns, Phil Kollmeyer, Michael Ryan, Bulent Sarlioglu
Location
This is an online course.
Cancellation Policy
If you cannot attend, please notify us no later than one week before your course begins, and we will refund your fee. Cancellations received after this date and no-shows are subject to a $150 administrative fee. You may enroll a substitute at any time before the course starts.
Introduction to Electric Machines and Drives
Course #: RA01369Introduction to Electric Machines and Drives
Date: Mon. March 07, 2022 – Thu. March 10, 2022ID: RA01369-C450
Fee:
- $1,695
-
Fee covers other: online instruction and course materials.
The Wisconsin Electric Machines and Power Electronics Consortium (WEMPEC) Member Discount: $200 off the course fee.
- CEU: 2
- PDH: 20
Introduction to Electric Machines and Drives
Date: Mon. March 15, 2021 – Thu. March 18, 2021ID: RA01369-C083
Fee:
- $1,695
- Fee covers course materials and instruction. WEMPEC Discount: $200 off for WEMPEC Members.
- CEU: 2
- PDH: 20
Create a custom learning experience
We can deliver this course as an on-site learning experience tailored to your organization’s specific training needs.
On-site / Customizable
We Bring It to You
Build a tighter team with an on-site training course. Choose from our most popular topics. We’ll create a collaborative experience based on your class size and specifications.
We Build It for You
Shape a course to meet your specific training needs. Add specialized topics and technology. Tweak the course materials. Make it yours. We’ll make it possible.
We Create It With You
Start from scratch with an unbiased analysis of your company’s training needs. We’ll help you pinpoint opportunities and develop a smart program for your in-house talent.